

PermeaPad[®] GIT Barrier

Measure the passive mass transfer/permeability of drugs through a biomimetic barrier

This developed biomimetic barrier enables an innovative approach for *in vitro* permeability assays*. The investigation with the barrier is easy, fast and reproducible to perform. The simulation of the passive mass transport can be performed by applying the PermeaPad[®] Barrier in a conventional Franz-Cell, side-by-side diffusion cell or other set-up. Thereby it is possible to measure the permeability of a drug.

Due to its unique and innovative composition the barrier is very robust, resistant and has a long shelf-life. As a consequence of these properties measurements are possible within a large pH range. The specific experimental conditions can be selected according to the substance studied.

* For research use only. Not for use in diagnostic procedures.

Technical Data

General technical data PermeaPad[®] GIT Barrier ^{1, 2}

Membrane components	Cellulose membrane + Lecithine (S-100)
MWCO	8-10 kDa
Disk Diameter	1. 14,0 + 0,2 mm
	2. 17,0 + 0,2 mm
	3. 25,0 + 0,2 mm
	4. 35,0 + 0,2 mm
Storage	Do not expose the product to sun and UV
	radiation and store at 25 °C.
Operation temperature	e.g. 25 °C; 37 °C
Measuring range	рН 1-10;
	pH gradient can be maintained for hours
Drug concentration	e.g. 5 mM
Sampling intervals	Freely selectable
Test duration	Up to 24 h
Analysis method	e.g. HPLC, LC-MS/MS, etc.
Data	Permeation, Flux, apparent permeation
	coefficient P _{app}
	drug recovery
Tested drug substances	Acyclovir, Atenolol, Calcein, Caffeine,
	Donepezil HCI, Hydrocortisone, Ibuprofen,
	Nadolol, Metoprolol, Paracetamol,
	Theobromine, Theophylline, Verapamil HCI
Warranty	Expiry date on label

Changes, including technical, reserved. 01.01.2023

With the innovative PermeaPad[®] GIT Barrier it is possible to determine/generate fast, easy and reproducible data about the permeability of drugs by the passive mass transport.

Figure 1: Figure of (a) Franz diffusion cell and (b) side-by-side diffusion cell and PermeaPad® Barrier.

Figure 1: Functional stability PermeaPad[®] GIT Barrier expressed by the permeability coefficient (P_{app}) of hydrocortisone at different pH values in a Franz-Cell. Control is represented by the permeability of hydrocortisone measured through support layer (cellulose membrane)¹.

Figure 2: Resistance of the PermeaPad[®] GIT Barrier and support barrier (cellulose-membrane) against a pH gradient (pH 7.4 / pH 1). The pH of the acceptor chamber (Franz-Cell) is plotted versus the time¹.

©PHABIOC GmbH All rights reserved. Proprietary and confidential

3

Version 4: Changes, including technical, reserved. 01.01.2023

References:

¹ M. di Cagno et al. (2015) European Journal of Pharmaceutical Sciences 73 29-34 ² H. A. Bibi et al. (2016) European Journal of Pharmaceutical Sciences 93 399-404

www.phabioc.com

